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3

How a Robot Works

/This chapter is written for readers who have limited technical\
background about intelligent interactive robotics. More specifically,
what is covered in this chapter:

e the basic hardware and software components that a robot con-
sists of;
e the techniques we can apply to make a robot ready for interact-

\_ ing with people. Y,

As a way of thinking about how a robot works, let us role play by
imagining being a robot. We might think we can do a lot of things, but
we soon find out our capabilities are severely limited. If we are newly
built robot, without appropriate software, our brains are completely
empty. We cannot do anything—move, know where we are, understand
what is around us, even ask for help. We find the experience of being
a robot rather strange and difficult to imagine. The main source of
strangeness is that the new robot’s brain is nothing like a human brain,
not even an infant’s. The robot has no basic instincts, no goals, no
memory, no needs, no learning capabilities, and no ability to sense or
act. To make a robot system, we need to integrate, and at least partially
develop, hardware and software together to enable the robot to sense
and act in the world.

In this chapter, we look at the common components of a robot and
how they are connected to enable participation in interaction. Sec-
tion [3.1] explains basic ideas about the components needed to build a
robot. Section explains the types of hardware. Section [3.3| intro-
duces sensors, such as cameras, range finders, and microphones, and
Section [3.4] introduces actuators. Finally, Section [3.5| explains the soft-
ware that accompanies the hardware elements, which addresses the
perception (e.g., computer vision), planning, and action control of the
robot.

18
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3.1 The making of a robot 19

3.1 The making of a robot

To build a robot, one of the first steps is to establish connections be-
tween the robot’s sensors, computer, and motors so that the robot is
able to sense, interpret what it senses, plan actions, and then act them
out. Once the robot is connected, to a camera, for example, its com-
puter can read the data the camera provides. But the camera image is
nothing more than a large table of numbers, similar to the following

table:
9 15 10
89 76 81
25 34 29

From these numbers, can you guess what the robot is seeing? Perhaps
a ball, an apple, or a fork? Assuming that each value in the table
represents the lightness value of one sensor element in the camera, we
can translate those numbers to a graphic that is more meaningful to
humans (see Figure , but the graphic remains meaningless to the
robot.
You might be able to see a line in the image shown in Figure
but a robot has no understanding of what a line is. This line might be
the edge of a cliff from which the robot could fall and damage itself.
But the robot does not have a concept of height or gravity. It would
not comprehend that it could fall if it crossed this line. It does not
know that if it fell, it would likely come to rest upside down. It would
not even recognize that its arm would be broken. In other words, even
concepts that are vitally important for interacting with and surviving
in the world around us that are innate in humans have to be explicitly
programmed in a robot. Figure 3.1 The
A robot, in essence, is a computer with a body. Any functionality camera’s data
needs to be programmed into the robot. A problem that all robots have trégd?md intola
to deal with is that although their sensors and motors are sufficient for ilir;elz Braymene
operating in this world, their intelligence is not. Any concept of inter-
est to roboticists needs to be internalized, that is, programmed into the
robot. This requires a lot of time and effort and often involves many
cycles of trial and error. The analogue world out there is converted -
into a digital world, and translating tables of numbers into meaning-
ful information and meaningful responses is one of the core goals of
artificial intelligence. Being able to identify a face from a large table
of values, recognizing if a person has been seen before, and knowing
that person’s name are all skills that require programming or learning.
Thus, the progress of human-robot interaction (HRI) is constrained by
the progress that is made in the field of artificial intelligence. Robo-
tics engineers integrate sensors, software, and actuators to enable the
robot to make sense of and interact with its physical and social envi-
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20 How a Robot Works

ronment. An engineer might, for example, use accelerometer sensors,
which can detect acceleration and the Earth’s gravitational pull, to
read the orientation of the robot and determine if it has fallen. A cliff
sensor, consisting of a small infrared light source pointing down and a
light sensor, can be used by the robot to avoid falling down a staircase.

Typical problems that robot engineers have to solve for the robot
include the following;:

e What kind of body does the robot have? Does it have wheels? Does
it have arms?

e How will the robot know its location in space?

e How does the robot control and position its body parts—for example,
arms, legs, wheels?

e What does the space around the robot look like? Are there obstacles,
cliffs, doors?” What does the robot need to be able to perceive about
this environment to move safely?

e What are the robot’s goals? How does it know when it has achieved
them?

e Are there people around? If so, where are they, and who are they?
How will the robot know?

e [s a person looking at the robot? Is someone talking to it? If so, what
does the robot understand from these cues?

e What is the human trying to do? What does the person want the
robot to do? How can we make sure the robot understands this?

e What should the robot do, and how should the robot react?

To address these questions, HRI researchers need to build or choose
appropriate hardware and an appropriate morphology for the robot,
and then develop relevant programs—the software—that can tell the
robot what to do with its body.

3.2 Robot hardware

At the time of this writing, a number of robots have been produced
for the consumer market. Although not all of them may have become
domestic staples, these commercial robots are often suitable platforms
for HRI research. Commercially available robots provide a variety of
body types, including animal-like, humanoid, and more mechanical.

Aibo, an example of an animal-like robot, looks like a dog with a
somewhat mechanical appearance (see Figure and has the ability
see, hear, feel touch, make sounds, wag its ears and tail, and move
around on its four legs. The first Aibo models were sold in 1999, and
sales were discontinued in 2006. Eleven years later, sales of new models
started again.

Pepper, on the other hand, is an adolescent-size humanoid (see Figure
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3.2 Robot hardware 21
Figure 3.2 Aibo
ERS-1000 robot

(2018-present).
' \ . (Source: Sony)
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. Some stores use Pepper to attract visitors and market wares and
services. The company that produces Pepper also has the smaller Nao
humanoid (see Figure available for consumer purchase.

A more mechanical-looking robot, the K5 security guard robot is
commercially available in the United States and is one of the few robots
that are meant to be used outdoors.

Robots that were not explicitly designed to be used for HRI can
nevertheless still be used or even modified for HRI studies. The most
commercially successful home robot is still the iRobot Roomba vacuum-
cleaning robot, millions of which have been sold around the world.
Roombas not only are an interesting agent for use in studying the
public’s relationship with robots (Forlizzi and DiSalvo, 2006) but have
also been modified and hacked for HRI research. iRobot also makes a
programmable version of the Roomba, the Create, which lacks the vac-
uuming component and is used in research and educational applications
of robots.

Telepresence robots can also be used as platforms for HRI research.
Many different types exist on the market, including mobile versions
such as the Beam and desktop versions like Kubi. Small mobile robots
carrying a screen displaying a friendly face are being developed, soon
to be ready for release in the consumer market.

Although commercially available robot hardware provides a wide va-
riety of morphologies and sensing and programming capabilities, every
robot is limited in what it can do; its appearance and capabilities con-
strain the interactions it can engage in. Researchers, therefore, also
conceive and build their own robots, which range from simple desktop
and mobile platforms with or without a manipulator to very humanlike
android robots. The choice of a particular morphology for a robot to
be used in HRI research often depends on the capabilities needed for
the expected task (e.g., whether it needs to be able to pick up objects),
the type of interaction (e.g., petlike interactions can benefit from an
animal-like robot), and people’s expectations and perceptions of differ-
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22 How a Robot Works
Figure 3.3
Pepper robot
(2014-present) and
its sensors (Source:
Softbank Robotics
and Philippe
Dureuiltoma)
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ent morphologies (e.g., humanoids may be expected to behave and be
intelligent in ways similar to humans).

3.3 Sensors

Most social robots are equipped with sensors that allow them to gauge
what is happening in their environment. Many commonly used sen-
sors are related to the three most commonly used modalities in human
interaction—vision, audition, and touch—Dbut robots are not at all lim-
ited to human modes of sensing. It is often helpful, therefore, to con-
sider what types of information the robot needs to perceive and what
the most accurate and expedient ways are for it to do so, rather than
focusing on reproducing human capabilities.

3.3.1 Vision

Camera

A camera consists of lenses that focus an image onto a sensor surface.
The sensor surface is implemented using either a charge-coupled device
(CCD) or, more often, a complementary metal-oxide-semiconductor
(CMOS) technology. The basic element of a camera is a light sensor
consisting mainly of silicon that converts light into electrical energy.

This material has been published by Cambridge University Press as Human Robot Interaction by
Christoph Bartneck, Tony Belpaeime, Friederike Eyssel, Takayuki Kanda, Merel Keijsers, and Selma Sabanovic.
ISBN: 9781108735407 (http://www.cambridge.org/9781108735407).
This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works.



(©) copyright by Christoph Bartneck, Tony Belpaeime, Friederike Eyssel, Takayuki Kanda, Merel Keijsers, and Selma Sabanovic 2019.
https://www.human-robot-interaction.org

3.8 Sensors 23
Figure 3.4 Array

of CCDs in RGB
camera.

=
A camera consists of an array of millions of these light sensors. Typ-
ically, color in a camera image is represented using three values, red
(R), green (G), and blue (B). Hence, a camera is commonly referred to
as an RGB camera. The sensors on the sensor surface are not sensitive
to the color of the light hitting them; they are only sensitive to light
intensity. To make an RGB camera, small color filters are placed on top
of the sensor surface, with each filter letting through only red, green, or
blue light (see Figure . Cameras are the richest and most complex
sensors available to robots, and through its wide adoption in digital

cameras and smartphones, the RGB camera has become miniaturized
and very cheap.

. .. . - c N
In computer vision research, investigators often put cameras in the

environment to facilitate accurate vision. Although this is one of
the realistic approaches to yielding stable performance from com-
puter vision, in the HRI setting, it is sometimes discouraged be-
cause people can feel uncomfortable around cameras. For example,
in a project in which elderly people were being assisted in their
home by a robot, the engineers would have loved to have cam-
eras on the robot and in the home because it would have allowed
the robot to accurately track and interact with people. However,
the elderly participants were quite firm in their refusal of the in-
stallation and use of cameras, forcing the team to use localization
beacons and laser range finders instead (Cavallo et al., 2014)).

/
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24 How a Robot Works

Most cameras have a more restricted field of view than that of hu-
mans. Whereas people can see more than 180 degrees, a typical cam-
era might only see 90 degrees, thus missing a lot of what is going on
in the periphery. A robot with a single camera will have a limited
field of view and might have to rely on other sensors, such as laser
range finders or microphones, to give it a sense of what is going on
around it.

Most importantly, the camera image needs to be processed using
computer-vision algorithms in order for the robot to be able to respond

to its visual environment (see Section [3.5.4)).

Depth sensors

Just as human vision uses stereo vision, knowledge about objects, and
self-motion to figure out the distance to objects, so can computer-vision
algorithms be used to extract a three-dimensional (3D) image from two-
dimensional (2D) information. Stereo cameras have been the technology
of choice for a long time, but in recent years, technologies have emerged
that allow us to see depth directly, without the need for computer
vision. These “depth sensors” output a “depth image” or RGBD image
(with D standing for depth), a map of distances to objects in view of
the camera.

Typically, a depth sensor can measure the distance to objects a few
meters away. Depending on the strength of the emitted infrared light,
most depth sensors only work reliably indoors. There are several ways
of making such depth sensors. One of the typical mechanisms is time of
flight (TOF), in which a device transmits invisible infrared light pulses
and measures the time taken between the moment when it transmitted
the light and the moment when it received the light’s reflection. Because
the speed of light is so high, the camera would need to record the timing
of the returning light with a precision that is out of reach of current elec-
tronics hardware. Instead, the camera emits pulses of infrared light and
measures the phase difference between the light leaving the camera and
the light returning to the camera. The Microsoft Kinect One, the second
iteration of Microsoft’s game controller, is based on this principle (see
Figure . Despite being developed as a game controller, it was quickly
adopted by robot builders and is now widely used to give robots a sense
of depth. Combined with appropriate software, the Kinect sensor can
also perform skeleton tracking, which is helpful for figuring out where
people are, what they are doing, and even how they are feeling. Smaller
devices are now available that return RGBD images based on a range
of different technologies, including TOF, structured light, and stereo
vision.
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Figure 3.5 The
Microsoft Kinect
Azure DK for
‘Windows sensor.
(Source: Used with
permission from
Microsoft)
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Laser range finders

In order to measure distances at longer ranges, researchers frequently
use a laser range finder, also known as light detection and ranging (LI-
DAR). A typical laser range finder can measure distances to objects up
to 30 meters away, and it samples the environment between 10 and 50
times per second. The accuracy of laser range finders is within a few
centimeters. The basic mechanism of this type of sensor is also TOF.
A laser range finder transmits a single beam of infrared laser light and
measures the distance by measuring the time between the moment it
transmits the laser beam and the time it receives its reflection. Typi-
cally, the transmitter and receiver are on a rotating platform, sweeping
the laser beam around the environment. Thus, the device only mea-
sures distance in a single 2D plane (i.e., the plane of rotation of the
rotating platform).

Robots can have range finders mounted at different heights to scan
for objects on a horizontal plane. Range finders close to the ground can
sense objects on the floor and people’s legs, whereas range finders that
are set higher up can be used to sense objects on a table or counter

(see Figure

3.3.2 Audio

Microphones are commonly used devices for auditory sensing. A micro-
phone converts sound into electrical signals. Microphones have different
sensitivity profiles; some are omnidirectional, picking up all sounds in
the environment, whereas others are directional, only picking up sounds
in a cone-shaped area in front of the microphone. Combining multiple
microphones into an array allows us to use “beam-forming” techniques,
which can separate sound signals coming from a specific direction from
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26 How a Robot Works

Figure 3.6 The
PR2 robots
(2010-2014): Can
you tell where the
range finder is?
(Source: Willow
Garage)

Figure 3.7 The
iCub
(2004-present)
humanoid has
capacitive tactile
sensors worked
into its fingers,
palms, and torso.
(Source: IIT
Central Research
Lab Genova)

ambient noises. Microphone arrays are used for sound source localiza-
tion, that is, getting an accurate reading on the angle of a given sound
source with respect to its position in relation to the microphone array.
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3.3.8 Tactile sensors

Tactile sensors can be important in HRI, for example, when the robot
is physically guided by the user. Many different implementations exist,
from physical buttons or switches to capacitive sensors such as those
found on touch screens (see Figure .

The most commonly used tactile sensor is a mechanical push switch.
It is often used together with a bumper. When a robot collides with an
object, the switch is closed, allowing the robot to detect the collision.
Pressure sensors and capacity sensors, like the ones reading your finger’s
position on a touch screen, can also be used to detect physical contact
with the environment. Pressure sensors can be implemented using a
range of technologies but usually contain a material that changes its
electrical properties (resistance or capacitance) when force is applied
(see Figure . Pressure sensors can help robots recognize whether
and how hard they are touching a person or object. They are also very
useful for enabling robots to pick up and handle objects appropriately.
Tactile sensors can also be used to allow the robot to know whether
someone is touching it, and the robot can be programmed to respond
accordingly. For example, the seal-like Paro robot has a tactile sensor
net all over its body that allows it to sense the location and pressure
with which a person is touching it and react by cooing for soft strokes
and crying out after a harder hit.

3.3.4 Other sensors

Various other sensors exist, many of which can be relevant to HRI.
Light sensors read the amount of light falling on the sensor and can
be used to sense a sudden change in light, signaling that something
has changed in the environment. When combined with a light source,
they can be used to detect objects. A simple and very effective obstacle
sensor combines an infrared light-emitting diode (LED) light with an
infrared light sensor; when light bounces back from objects in front of
the sensor, it can determine the distance to objects. This not only is
used to detect obstacles in front of the robot but can also be used to
sense when people are approaching the robot.

In recent years, the inertial measurement unit (IMU) has become
a popular sensor. It combines three sensors—an accelerometer, a gy-
roscope, and a magnetometer—and is used the read the rotation and
motion of the sensor or, more accurately, the rotational and transla-
tional acceleration. Recent advances in micro-electrical manufacturing
have allowed these sensors to be miniaturized down to a few millime-
ters. They have become ubiquitous in mobile phones and miniature
drones, and when used in a robot, they allow the robot to sense if it
falls or to keep track of where it has moved over time.
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Far infrared sensors (FIRs) are cameras that are sensitive to long-
wavelength infrared light, which is emitted by warm bodies. They can
be used to detect the presence of people, as used in burglar alarms, or
when integrated into an FIR camera, they can be used to record an
image of the temperature of the room. FIR sensors are still expensive
and are mainly used for thermal imaging, but eventually, they may
allow the robot to see people at night or in cluttered environments.

It is important to realize that, unlike our own senses, sensors do not
necessarily need to be mounted on the robot. A robot might rely on a
ceiling-mounted camera to interpret the social environment, or it could
use a wall-mounted microphone array to localize who is speaking. The
whole environment could, in a sense, be considered part of a robot
system.

3.4 Actuators

An actuator converts electrical signals into physical movements. A sys-
tem with one actuator typically realizes motion either on one straight
line or on one rotational axis. This means that the system has one
degree of freedom. By combining multiple motors, we can develop a
robot that has motion with multiple degrees of freedom, allowing for
navigation of a 2D plane or gesturing with human-like arms.

3.4.1 Motors

The standard actuator for robots is a direct-current (DC) servo motor
(see Figure . It typically consists of a DC motor and a microcon-
troller, with a sensor such as a potentiometer or an encoder, which
outputs the absolute or relative position of the motor’s output axis.
To control the speed, the controller typically sends pulse-width mod-
ulation (PWM) signals to the DC motor. PWM is an on/off pulse,
literally switching the motor on for a few milliseconds and then back
off. This is done several times per second (up to 100 times per sec-
ond), and the duration of the on phase against the off phase (known
as the duty cycle) determines the speed at which the motor rotates.
The PWM signal controls the speed of the motor, and the controller
sets the position of the motor. This is done through feedback control,
where the controller continuously reads the position of the motor and
adjusts the motor’s PWM and direction to reach or maintain a desired
position. For motors used in a robot’s arms and head, the controller
typically performs position control to rotate the motor toward a given
commanded angle. For motors used in wheels on a mobile base, the
controller typically performs velocity control to rotate the motor at
the commanded velocity.
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Figure 3.8
Connecting servo
motors to each
other allows robots
to move around in
various ways, such
as in this robot
arm. (Source:
Trossen Robotics)

Robots can have different configurations and numbers of motors de-
pending on the body shape and the functions they are meant to per-
form. Commercially available cleaning robots, such as Roomba, typ-
ically have two motors driving the wheels and one tactile sensor for
moving around the room. Thus, Roomba has two degrees of freedom
(DOFs). A simple nodding robot may have one motor to control its
head direction, meaning that it has one DOF. A better-equipped hu-
manoid may have three DOFs for its head, controlling pan, tilt, and
yaw; two arms with four to seven DOFs; a mobile base with at least two
motors; and sensors for visual, auditory, and tactile sensing. A robot
arm, such as the KUKA (see Figure , must have at least six DOF's
to manipulate an object. Three DOF's are necessary to locate its end
effector (e.g., hand) to be in a position within a reachable range of the
object, and another three DOFs are needed to grasp the object from
any direction. A human arm can be approximated as an arm having
seven DOFs, with an additional redundant one DOF beyond the nec-
essary six DOFs for manipulation. To grasp objects, a robot arm must
have some type of end effector attached at the end. A 1-DOF gripper
can be used to grasp an object, but more complex robot hands can
have as many as 16 DOFs. Android robots, designed to closely resem-
ble humans, typically have many more DOFs (e.g., 50 DOFs) and are
able to control their facial expressions and other bodily movements in
relatively nuanced ways compared to simpler robots.

Motors come in many different sizes, speeds, and strengths and thus
have differing power needs. It is therefore important to consider from
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Figure 3.9 Kuka
robot arm.
(Source: Kuka)

Figure 3.10
RoboThespian
(2005-present)
uses pneumatic
actuators to
achieve the
acceleration
required to deliver
a convincing
theatrical
performance. The
robot can run for
around a day on a
scuba tank’s worth
of compressed gas,
although it can
also be attached to

a Compressor.
(Source: Photo
copyright
Engineered Arts)
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early on in the design process how the motor specifications relate to
the robot’s design and what kinds of actions a robot will need to make,
such as whether it will need to pick up a 1-kilogram bag or just needs
to wave its arms; how big the robot can be while still fitting in well
with its environment; how quickly it needs to respond to stimuli; and
whether it needs to have a portable power bank or can be plugged into
the wall.

3.4.2 Pneumatic actuators

A pneumatic actuator uses a piston and compressed air. Air is deliv-
ered from a compressor or from a vessel containing high-pressure air,
which needs to be attached to the robot in some way. Pistons typi-
cally can extend and contract, depending on which valves are opened
to let in the compressed air. As opposed to electric motors, pneumatic
actuators produce linear motion, which is somewhat similar to human
muscle motion, and are able to produce accelerations and speeds that
are difficult to achieve using electric motors. Hence, they are often pre-
ferred for humanoid robots and android robots that need to gesticulate
at humanlike acceleration and velocity (see Figure . The compres-
sors that they need to operate can be quite loud, so it is important
to consider how to give the robot access to compressed air without
marring the interaction experience.
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3.4.3 Speakers

To generate sounds and speech, standard loudspeakers are used. Speak-
ers are perhaps the cheapest actuator on the robot, but in terms of HRI,
they are indispensable. Where to place a speaker or speakers in the ro-
bot’s body is an important factor to consider when designing a robot
that will interact with people. |Takayama) (2008|) showed that the rel-
ative height from which the voices of a user and an agent interacting
with each other are projected can influence who is seen to be dominant
in the interaction.

3.5 Software

All the currently available robots are controlled by software running
on one or several computers. The computers receive data from sensors
and periodically send commands to the actuators. Some robots do all
processing on-board, but many robots will ofload processing to other
computers. In more recent robot software, the speech recognition, com-
puter vision, and storage of user data often happen in the cloud, trans-
mitted by internet-connected software services, typically operating on
a pay-per-use basis. The advantage of cloud-based computing is that
the robot has access to much more computing power and storage than
it could ever carry on-board. Smart speakers, such as Google Home
and Amazon Alexa, rely on cloud-based computing. However, a disad-
vantage is that when a robot relies on cloud-based computing, it needs
robust communication with the cloud server, which is not necessarily
guaranteed, particularly when a robot is mobile. Thus, time-critical
computing and computing used to guarantee safety (e.g., emergency
stop) are usually done on-board.

3.5.1 Software architecture

A robot is much more than a computer with a body. A computer oper-
ates in a clean, digital environment, whereas a robot needs to interface
with the messy, buzzing confusion of the real world. Not only does it
need to make sense of the world, but it also needs to do so in real-
time. This environment requires a radically different approach to robot
software.

Architecture models

How should software for a robot be organized? A first rule of thumb,
which is applicable to nonrobot software as well, is that messy program
code should be avoided. Researchers and developers must aim to mod-
ularize software. One typical approach is to follow the “sense-plan-act”
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Figure 3.11

Sense-plan-act Sense Act
model. ’_) —‘

model (see Figure , in which inputs from sensors are processed us-
ing software modules specific to perception, which then convert sensor
streams into high-order presentations. For example, audio recordings
of speech are converted into a text transcription, or camera images are
analyzed to report on the location of faces. Next, there is a section
that deals with “planning,” which plans the robot’s next actions using
information gleaned from the sensing process, then outputs commands
to modules for action.

For instance, a person-finding perception module reports on the lo-
cation of people detected in a 2D camera image and also returns the
size of the heads, indicative of how close people are to the robot. Next,
the planning module computes the head orientation for the robot to
face the nearest speaker and sends a command to move the head to
the output modules. The output modules then calculate which angle
is needed for the robot’s neck motors and send these to the low-level
motor controllers.

The sense-plan-act approach is also known as the deliberative ap-
proach because the robot deliberates its next action. Quite often, we
want a robot to respond quickly to external events, without spending a
lot of time pondering what to do next. In this case, we often program
simple “behaviors” for the robot (Brooks, 1991)). Behaviors are tightly
coupled sensor—action processing loops, which immediately respond to
an external event. These can be used to make an emergency stop when
the robot is about to drive down the stairs, but they can serve equally
well in social interaction. When a loud bang is heard, or when a face
appears in view, we want the robot to respond as fast as possible.
Act first; think later. Often, there are dozens of behaviors running on
the robot, and mechanisms exist to mediate between which behaviors
are active and which are not. One such mechanism is the subsump-
tion architecture, which organizes behavior into hierarchies, allowing a
behavior to activate or inhibit others (Brooks, [1986)) (see Figure .

With this approach, even though the robot does not have an explicit
“representation” of the world, it can still behave in an apparently in-
telligent way. For instance, if a cleaning robot uses two behaviors in
parallel, one that avoids the wall and another that makes it have a
slight pull to the right, the resulting, or emergent, behavior is that of
wall following. Even though wall following wasn’t programmed explic-
itly, it emerges from the interaction between two simpler behaviors.
The vacuum robot Roomba has been developed with such an idea in
mind.

Think

Y
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In HRI studies, we typically find ourselves looking for a middle
ground between the deliberative and reactive approaches. We want
a reactive control layer, which responds quickly to subsecond social
events, followed by a deliberative layer, which formulates a coherent
response to slower elements of the interaction, such as conversation.

In light of this, it is important to develop software that can be decom-
posed into a number of smaller modules. Even if the complete wealth
of a sense-plan-act model is not needed, it is still common practice to
separate modules into perception, planning, and action.

Planning is diverse in terms of components and complexity and de-
pends heavily on the robot and the application. A cleaning robot may
need to compute the next location to clean, whereas a companion robot
may need to make a decision on how it should initiate a conversation
with a user. The software on a Roomba vacuum will therefore be radi-
cally different from that on a Pepper humanoid. For interactive robots,
various forms of HRI knowledge will be embedded into the various
software modules.

Action modules take care of the actuation and social output of the
robot, such as nonverbal utterances, speech, hand gestures, and loco-
motion. For instance, the speech-synthesis module may receive text and
convert this into spoken words together with timing information that
allows the robot to accentuate its speech with appropriate gestures.

3.5.2 Software-implementation platform

Software typically runs on an operating system (e.g., Windows or Linux)
and typically on some implementation platform. Robot Operating Sys-
tem (ROS) is a platform commonly used in the robotics and HRI com-
munities. It deals with communications between sensors and modules
and offers libraries and tools to support frequently used robot abili-
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ties, such as localization and navigation. ROS has a large community
of users, who often share modules on public software repositories.

3.5.3 Machine learning

Some tasks can be learned rather than being programmed explicitly.
The practice of letting a robot learn a skill is called machine learning.
There are various machine-learning techniques, as described next.

Training data

Machine learning requires data from which the robot can learn. This
training data set should contain a large number of examples of the thing
to be learned, which may be data from sensors or text and generally has
been manually annotated by people. For instance, there can be a data
set with camera images of human faces, and for each image, the emotion
of the person is labeled, such as “neutral,” “smile,” or “angry.” Typical
data sets contain hundreds of thousands or even millions of examples.

Feature extraction

To aid machine learning, sensor data are often preprocessed by con-
verting the sensor data into a more suitable representation and by
extracting salient features from the data. This process is called feature
extraction. There are many algorithms to extract features from raw
sensor input. For instance, edge detection highlights the pixels in an
image where the intensity abruptly changes, and a segmentation algo-
rithm identifies regions in an image where the colors are all similar,

Figure 3.13 which can indicate a face, hair, or an eye (see Figure [3.13)).
Canny edge Features are, in essence, numbers. Often these features are placed into

detecti f . .
CLECUOn o7 A WSEL g feature vector, a row of numbers ready for processing. For instance,

one could count up the number of pixels detected as an edge and use it
as one of the variables of the feature vector. Researchers often manually
analyze their data sets and identify salient features. For instance, with
careful observation, one might find that a child fidgets more than an
adult does; once such a feature is found, one can add variation of motion
to the feature vector.

operating the
buttons on a robot.

Classification based on training

There are a number of machine-learning approaches. One often-used
approach is classification. In classification, an algorithm decides, based
on training data, what class an unknown data point belongs to. For
example, given a camera image of a person, the classifier decides what
emotion the person’s face shows.

Suppose we can compute a one-dimensional (1D) feature vector rep-
resenting people’s height and have a data set with two classes, “child”
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or “adult” (i.e., each data point in the training data will have a label
saying whether the data point is a “child” or “adult”). The classifier
learns a threshold value from the training data set (e.g., 150 cm) to
distinguish the two classes.

In this case, the feature vector contains only a single feature, the
height of the user. We call this a 1D feature vector. Machine-learning
algorithms typically work with thousands of features and try to rec-
ognize up to thousands of classes. Classification errors often happen.
For instance, a tall child or short adult would probably be classified
incorrectly.

Machine-learning algorithms perform better when having access to
more data. Ideally, we want machine-learning algorithms to “general-
ize,” meaning they correctly handle data that they have never been
exposed to. However, sometimes machine learning produces an algo-
rithm that “overfits.” When this happens, the algorithm does really
well on the data it has been trained on, but it performs poorly when
confronted with new problems.

Deep learning

Deep learning, also known as deep neural networks (DNNs), is a machine-
learning technique made possible through the increased availability of
computational power. Deep learning relies on artificial neural networks
with a large number of layers of interconnected artificial neurons—
hence the name “deep.” It takes a large amount of computational power
to train DNNs, but recent progress in using parallel computing and
graphical-processing units (GPUs) has allowed us to train these net-
works within a matter of days.

DNNs do not require careful feature extraction by hand. Instead,
DNNs discover the relevant features from the data by themselves. A
drawback is that DNNs require huge amounts of data, typically mil-
lions of data points. For instance, Google collected an enormous data
set, containing more than 230 billion data points, to train its speech-
recognition algorithm.

The need for large data sets is a significant challenge for HRI because
it is difficult to collect large amounts of data in which humans and
robots are interacting. The complexity of deep learning also makes it
difficult to know exactly what the network bases its decisions on (e.g.,
we may not know what features it has identified or how it decided to
use these features to come to a classification), which can be particularly
problematic for HRI outside of the laboratory when we need to trust
that the system will be robust, safe, and predictable. If the robot does
something wrong, we need to be able to figure out how to debug and
correct the system, as in the case of an autonomous Uber vehicle that
had trouble classifying a person crossing the road and ran over the
person as a result (Marshall and Davies, 2018).
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3.5.4 Computer vision

Computer vision is an important area for HRI. In essence, computer
vision interprets a 2D array of numbers when working with single im-
ages, or a series of 2D images recorded over a period of time when
working with video data. Computer vision can be rather straightfor-
ward and still very effective in the context of HRI. Motion detection,
for example, can be achieved by subtracting two camera images taken
just a fraction of a second apart. Any pixels that captured motion will
have a nonzero value, which in turn can be used to calculate the region
with the most motion. When used on a robot, a motion detector lets
the robot orient itself toward the areas with the most motion, provid-
ing the illusion that the robot is aware of things moving, which, in the
context of HRI, often involves people gesturing or talking.

Another computer-vision technique relevant to HRI is processing
faces. The ability to detect faces in an image has advanced and can
be used, for example, to let the robot look people in the eye. Face
recognition (i.e., identifying a specific person in an image) is still a
challenge, however. Impressive progress has been made in recent years,
mainly fueled by the evolution of deep learning, and it is now possible
to reliably recognize and distinguish between hundreds of people when
they are facing the camera. But face recognition typically fails when
the user is seen from the side.

Skeleton tracking is another technique relevant to HRI. In skeleton
tracking, the software attempts to track where the user’s body and
limbs are. This technique was first used in gaming on the Microsoft
Xbox console, with software specific to the Kinect RGBD sensor, but
is now a staple in many HRI applications. Several software solutions
exist, but recently, deep learning has enabled the reading of skeletons
of dozens of users in complex scenarios from a single simple camera
image, without the need for an RGBD sensor. The software for this,
called OpenPose, is now freely available and often used in HRI studies
(Cao et al., 2017).

There are many commercial and free software solutions that offer a
range of out-of-the-box computer-vision functionality. OpenCV is per-
haps the best-known offering; it is a free software library, developed
over 20 years, that can be used for facial recognition, gesture recog-
nition, motion understanding, object identification, depth perception,
and motion tracking, among others.

Because computer vision often requires a considerable amount of
computational power, which is not realistic on small or cheaper robots,
sometimes the computer-vision process is addressed on the cloud. In
this case, the video stream of the robot is sent over an internet connec-
tion to servers on the cloud. There are commercial-based cloud solu-

This material has been published by Cambridge University Press as Human Robot Interaction by
Christoph Bartneck, Tony Belpaeime, Friederike Eyssel, Takayuki Kanda, Merel Keijsers, and Selma Sabanovic.
ISBN: 9781108735407 (http://www.cambridge.org/9781108735407).
This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works.



(©) copyright by Christoph Bartneck, Tony Belpaeime, Friederike Eyssel, Takayuki Kanda, Merel Keijsers, and Selma Sabanovic 2019.
https://www.human-robot-interaction.org

3.6 Limitations of robotics for HRI 37

tions for face recognition, person identification, and image classification
being sold on a per-use basis.

3.6 Limitations of robotics for HRI

There are several limitations of robotics, some of which are specific
to HRI and some of which apply to robotics in general. One general
challenge is that a robot is a complex system that needs to translate
between the analogue world and the digital internal computation of the
robot. The real world is analogue, noisy, and often very changeable, and
the robot first needs a suitable digital representation of the world, which
the software then uses to make decisions. Once a decision is made, this
is translated back into analogue actuation, such as speaking a sentence
or moving a leg.

Another major challenge applicable to all of robotics is that of learn-
ing. Currently, machine learning needs to iterate through millions of
examples to slowly nudge itself toward performing a task with a rea-
sonable level of skill. Despite speedups due to advances in DNNs and
GPUs, at the time of writing, computers need days or often weeks to
learn, and this is only when all the learning can happen internally,
for example, in simulation or using prerecorded data. Learning from
real-time data that a robot samples from the world is still virtually
impossible. Related to this is the challenge of “transfer,” or the per-
formance of one skill transferring to another. For example, people can
learn to play one game of cards and will then be able to transfer that
knowledge to quickly pick up another game of cards with different rules.
Machine learning typically struggles with this task and needs to start
the learning of a new challenge from scratch.

The seamless integration of the various systems on a robot is also a
major challenge. Speech recognition, natural-language understanding,
social-signal processing, action selection, navigation, and many other
systems all need to work together in order to create convincing social
behavior in a robot. On simple robots, this is manageable, but on more
complex robots, the integration and synchronization of these various
skills are still beyond our grasp. Face detection, emotion classification,
and sound-source localization might each work well in isolation, but
bringing the three together to make the robot respond in a humanlike
manner to people approaching the robot is still a challenge. Greeting
people who smile at the robot, looking up when the door slams, or
ignoring people who show no interest in the robot sound easy, but it is
difficult to build such behavior that consistently works well. The chal-
lenge becomes formidable once further skills are added. Conversational
robots, which aim to interact with people using natural language in
addition to using their full suite of sensors to react in an appropri-
ate manner, are only now being attempted in research labs across the
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world. It is unlikely that a robot will be built in the next decade that
can handle a conversation as well as people can.

Robots and artificial intelligence (AI) systems in general struggle
with semantics: they often do not truly understand what happens
around them. A robot might seem to respond well to a person ap-
proaching it and asking for directions, but this does not mean that the
robot understands what is happening—that the person is new to the
space, or where the directions it gives actually lead to. Often, the ro-
bot has been programmed to face people when they come near and to
respond to key words it hears. Real understanding is, at the moment,
still exclusive to humans. Although there are research projects on im-
buing Al systems with a sense of understanding (Lenat, 1995; |[Navigli
and Ponzetto, 2012), there are not yet robots that can use their multi-
modal interaction with the world to understand the social and physical
environment.

4 The reasons why AI has not yet achieved a humanlike general intel- h
ligence level are manifold, but conceptual problems were identified
right from the outset. |Searle (1980) pointed out that digital com-
puters alone can never truly understand reality because they only
manipulate syntactical symbols that do not contain semantics. In
his Chinese Room thought experiment, a slip of paper with Chinese
symbols is slid under the door of a room. A man inside the room
reads the symbols and comes up with a response by applying a set
of rules he finds in a book full of instructions containing more Chi-
nese characters. He then writes the response in the form of other
Chinese characters and slides it back under the door. The audience
behind the door might be under the impression that the man in
the room understands Chinese, whereas in reality, he just looks up
rules and has no understanding of what those symbols really mean.
In the same manner, a computer also only manipulates symbols to
come up with a response to input. If the computer’s response is of
humanlike quality, does that mean the computer is intelligent?

According to Searle’s line of argument, IBM’s chess-playing com-
puter Deep Blue does not actually understand chess, and Deep-
Mind’s AlphaGo does not understand the game of Go. Both pro-
grams may have beaten human masters of the game, but they did
so only by manipulating symbols that were meaningless to them.
The creator of Deep Blue, Drew McDermott, replied to this crit-
icism: “Saying Deep Blue doesn’t really think about chess is like
saying an aeroplane doesn’t really fly because it doesn’t flap its
wings” (1997). That is, he debated that as far as it functions as
it is supposed to, a new machine or Al does not need to replicate
all the details of humans, animals, or birds. This debate reflects
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different philosophical viewpoints about what it means to think
and understand and is still under way today. Similarly, the possi-
bility of developing general Al remains an open question. All the
same, progress has been made. In the past, a chess- or Go-playing
machine would have been regarded as intelligent. But now it is re-
garded as the feat of a calculating machine—our criteria for what
constitutes an intelligent machine have shifted along with the ca-
L pabilities of machines. )

In any case, no sufficiently intelligent machine has yet been built
that would provide a foundation for many of the advanced application
scenarios that have been imagined for robots. Researchers often fake
the intelligence of the robot by applying the Wizard-of-Oz method (see
p- . The requirements of HRI often imply unrealistic assumptions
about what can be achieved with current technology, and novice re-
search and the public should be aware of the limitations of robotics
and Al

3.7 Conclusion

Robots are made from multiple software modules connected with sen-
sors and actuators. Software design requires HRI knowledge, and con-
versely, HRI researchers need to have a basic understanding of software
in order to provide useful knowledge for future HRI developers. For a
robot to be successful, the different components need to be chosen
and integrated with an eye toward the specific HRI application and its
needs. Despite limitations, however, robots can be designed to interact
successfully with humans in various types of short-term, and sometimes
longer, interactions.

4 Questions for you to think about: h

e Chapters[2 and [3|introduce various robot types that are available
on the market. What sensors do these robots have? What actu-
ators do they have? What hardware components do you think
are crucial?

e Imagine a scenario where you want to use a smart social robot.
Which sensors and actuators should it have? What skills should
the robot have, and is software available to deliver these skills?

e What kind of data set would be needed to train a machine-
learning algorithm for a new interaction capability of a robot,

S such as distinguishing your face from others? )
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4 Future reading;: h

e For basic Al:
Stuart Russell and Peter Norvig. Artificial intelligence: A
modern approach. Pearson, Essex, UK, 3rd edition, 2009.
ISBN 978-0136042594. URL http://www.worldcat.org/oclc/
496976145

e For basic robotics:
Maja J. Mataric. The robotics primer. MIT Press, Cambridge,
MA, 2007. ISBN 9780262633543. URL http://www.worldcat.
org/oclc/604083625

e For diverse topics in robotics:
Bruno Siciliano and Oussama Khatib. Springer handbook of
robotics. Springer, Berlin, 2016. ISBN 9783319325507. URL

9 http://www.worldcat.org/oclc/945745190
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